Body - Fields¶
The same way you can declare additional validation and metadata in path operation function parameters with Query
, Path
and Body
, you can declare validation and metadata inside of Pydantic models using Pydantic's Field
.
Import Field
¶
First, you have to import it:
from typing import Optional
from fastapi import Body, FastAPI
from pydantic import BaseModel, Field
app = FastAPI()
class Item(BaseModel):
name: str
description: Optional[str] = Field(
None, title="The description of the item", max_length=300
)
price: float = Field(..., gt=0, description="The price must be greater than zero")
tax: Optional[float] = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item = Body(..., embed=True)):
results = {"item_id": item_id, "item": item}
return results
from fastapi import Body, FastAPI
from pydantic import BaseModel, Field
app = FastAPI()
class Item(BaseModel):
name: str
description: str | None = Field(
None, title="The description of the item", max_length=300
)
price: float = Field(..., gt=0, description="The price must be greater than zero")
tax: float | None = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item = Body(..., embed=True)):
results = {"item_id": item_id, "item": item}
return results
Warning
Notice that Field
is imported directly from pydantic
, not from fastapi
as are all the rest (Query
, Path
, Body
, etc).
Declare model attributes¶
You can then use Field
with model attributes:
from typing import Optional
from fastapi import Body, FastAPI
from pydantic import BaseModel, Field
app = FastAPI()
class Item(BaseModel):
name: str
description: Optional[str] = Field(
None, title="The description of the item", max_length=300
)
price: float = Field(..., gt=0, description="The price must be greater than zero")
tax: Optional[float] = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item = Body(..., embed=True)):
results = {"item_id": item_id, "item": item}
return results
from fastapi import Body, FastAPI
from pydantic import BaseModel, Field
app = FastAPI()
class Item(BaseModel):
name: str
description: str | None = Field(
None, title="The description of the item", max_length=300
)
price: float = Field(..., gt=0, description="The price must be greater than zero")
tax: float | None = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item = Body(..., embed=True)):
results = {"item_id": item_id, "item": item}
return results
Field
works the same way as Query
, Path
and Body
, it has all the same parameters, etc.
Technical Details
Actually, Query
, Path
and others you'll see next create objects of subclasses of a common Param
class, which is itself a subclass of Pydantic's FieldInfo
class.
And Pydantic's Field
returns an instance of FieldInfo
as well.
Body
also returns objects of a subclass of FieldInfo
directly. And there are others you will see later that are subclasses of the Body
class.
Remember that when you import Query
, Path
, and others from fastapi
, those are actually functions that return special classes.
Tip
Notice how each model's attribute with a type, default value and Field
has the same structure as a path operation function's parameter, with Field
instead of Path
, Query
and Body
.
Add extra information¶
You can declare extra information in Field
, Query
, Body
, etc. And it will be included in the generated JSON Schema.
You will learn more about adding extra information later in the docs, when learning to declare examples.
Recap¶
You can use Pydantic's Field
to declare extra validations and metadata for model attributes.
You can also use the extra keyword arguments to pass additional JSON Schema metadata.